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Abstract A goal of systems neuroscience is to discover the circuit mechanisms underlying brain

function. Despite experimental advances that enable circuit-wide neural recording, the problem

remains open in part because solving the ‘inverse problem’ of inferring circuity and mechanism by

merely observing activity is hard. In the grid cell system, we show through modeling that a

technique based on global circuit perturbation and examination of a novel theoretical object called

the distribution of relative phase shifts (DRPS) could reveal the mechanisms of a cortical circuit at

unprecedented detail using extremely sparse neural recordings. We establish feasibility, showing

that the method can discriminate between recurrent versus feedforward mechanisms and amongst

various recurrent mechanisms using recordings from a handful of cells. The proposed strategy

demonstrates that sparse recording coupled with simple perturbation can reveal more about circuit

mechanism than can full knowledge of network activity or the synaptic connectivity matrix.

DOI: https://doi.org/10.7554/eLife.33503.001

Introduction
In systems neuroscience we seek to discover how neural responses and complex functionality can

emerge from the dynamical interactions of neurons in circuits. For instance, the circuit mechanisms

that give rise to orientation tuning in primary visual cortex have been closely studied for the better

part of a century (Hubel and Wiesel, 1959). Despite these efforts, arbitrating between between dif-

ferent candidate mechanisms has been difficult. Our experimental tools are typically observational:

Neurons are recorded, often during a behavior, in increasing numbers today (Dombeck et al., 2010;

Ahrens et al., 2012; Ziv et al., 2013; Dunn et al., 2016). Our theoretical models usually run in the

‘forward’ direction: We build hypothesized circuits to reproduce the observed activity data. Because

there often is a many-to-one mapping from plausible models to neural activity, it is difficult to know

which model more accurately describes the underlying system. For this reason, it remains unsettled

whether – to return to a familiar example – orientation tuning arises mostly from selective feedfor-

ward summation of inputs or lateral interactions (Rivlin-Etzion et al., 2012; Kim et al., 2014;

Takemura et al., 2013; Ferster and Miller, 2000; Sompolinsky and Shapley, 1997).

Here, we show that grid cells (Hafting et al., 2005) provide a unique opportunity to understand

cortical circuit mechanism, when coupled with a novel approach for doing so. The promise of our

approach lies in the fact that (1) it is not merely observational but rather relies on perturbation, and

(2) it provides a novel theoretical measure (the ‘distribution of relative phase shifts’ or DRPS) along

which several competing feedforward and recurrent grid cell models can be distinguished with the

perturbative experiments.

The structure of grid cell responses – with their periodic tuning to 2D space – makes the system

particularly amenable to dissection, as we will see below. Grid cells have already yielded insight into
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their underpinnings: All cells with a common spatial tuning period remain confined to a single 2D

manifold in activity space, and this manifold is invariant over time even when grid cell tuning curves

deform as the animals are moved between novel and familiar environments (Yoon et al., 2013;

Fyhn et al., 2007), as well as during REM and non-REM sleep (Gardner et al., 2017; Trettel et al.,

2017). These findings imply the existence of a 2D continuous attractor dynamics within or feeding

into the grid cell circuit.

Many models reproduce the spatially periodic responses of individual grid cells or groups of cells

(Fuhs and Touretzky, 2006; Burak and Fiete, 2006; McNaughton et al., 2006; Hasselmo et al.,

2007; Burgess et al., 2007; Kropff and Treves, 2008; Guanella et al., 2007; Burak and Fiete,

2009; Welday et al., 2011; Dordek et al., 2016). These include models in which the mechanism of

grid tuning is a selective feedforward summation of spatially tuned responses (Kropff and Treves,

2008; Dordek et al., 2016; Stachenfeld et al., 2017), recurrent network architectures that lead to

the stabilization of certain population patterns (Fuhs and Touretzky, 2006; Burak and Fiete, 2006;

Guanella et al., 2007; Burak and Fiete, 2009; Pastoll et al., 2013; Brecht et al., 2014;

Widloski and Fiete, 2014), the interference of temporally periodic signals in single cells

(Hasselmo et al., 2007; Burgess et al., 2007), or a combination of some of these mechanisms

(Welday et al., 2011; Bush and Burgess, 2014). They employ varying levels of mechanistic detail

and make different assumptions about the inputs to the circuit. Because exclusively single-cell mod-

els lack the low-dimensional network-level dynamical constraints observed in grid cell modules

(Yoon et al., 2013), and are further challenged by constraints from biophysical considerations

(Welinder et al., 2008; Remme et al., 2010) and intracellular responses (Domnisoru et al., 2013;

Schmidt-Hieber and Häusser, 2013), we do not further consider them here. The various recurrent

network models (Fuhs and Touretzky, 2006; Burak and Fiete, 2006; McNaughton et al., 2006;

Guanella et al., 2007; Burak and Fiete, 2009; Brecht et al., 2014) produce single neuron responses

consistent with data and further predict the long-term, across-environment, and across-behavioral

state cell–cell relationships found in the data (Yoon et al., 2013; Fyhn et al., 2007; Gardner et al.,

2017; Trettel et al., 2017), but are indistinguishable on the basis of existing data and analyses.

Here we examine ways to distinguish between a subset of grid cell models, specifically between the

recurrent and feedforward models, and also between various recurrent network models. We call this

subset of models our candidate models. Our goal is not to provide new models of grid cell activity,

but rather to show, through theory and modeling, how the candidate models could be feasibly dis-

tinguished through experiment.

The candidate models form a diverse set, with differences that carry important implications for

mechanism and for how the network could have developed from plasticity mechanisms. The candi-

dates first broadly partition into recurrent and feedforward models, depending on whether the

dynamics that originate spatial tuning and velocity integration are within (recurrent) or upstream

(feedforward) of the grid cell layer. Recurrent models further partition on the basis of two key fea-

tures: topology (periodic or not) and locality of connectivity (from local to global).

Among recurrent models, the first candidate models are aperiodic networks (Figure 1a)

(Burak and Fiete, 2009; Widloski and Fiete, 2014): Network connectivity has no periodicity (flat,

hole-free topology) and it is purely local (with respect to an appropriate or ‘topographic’ rearrange-

ment of neurons only nearby neurons connect to each other). Despite the aperiodic and local struc-

ture of the network, activity in the cortical sheet is periodically patterned (under the same

topographic arrangement). In this model, co-active cells in different activity bumps in the cortical

sheet are not connected, implying that periodic activity is not mirrored by any periodicity in connec-

tivity. Interestingly, this aperiodic network can generate spatially periodic tuning in single cells

because, as the animal runs, the population pattern can flow in a corresponding direction and as

existing bumps flow off the sheet, new bumps form at the network edges, their locations dictated

by inhibitory influences from active neurons in other bumps (Figure 1e). From a developmental per-

spective, associative learning rules can create an aperiodic network (Widloski and Fiete, 2014), but

only with the addition of a second constraint: Either that associative learning is halted as soon as the

periodic pattern emerges, so that strongly correlated neurons in different activity neurons do not

end up coupled to each other, or that the lateral coupling in the network is physically local, so that

grid cells in the same network cannot become strongly coupled through associative learning even if

they are highly correlated, because they are physically separated. In the latter case, the network

would have to be topographically organized, a strong prediction.
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Figure 1. Mechanistically distinct models that cannot be ruled out with existing results. (a–d) Recurrent pattern-forming models. Gray bumps:

population activity profiles. Blue: Profile of synaptic weights from a representative grid cell (green) to the rest of the network. Bottom of each panel: 2D

network; Top: equivalent 1D toy network. Matching arrows along a pair of straight network edges signify that those edges are glued together. (a)

Aperiodic network: (Burak and Fiete, 2009; Widloski and Fiete, 2014): local connectivity without periodic network boundaries. (b) Partially periodic

network (Burak and Fiete, 2009): local connectivity in a network with periodic boundaries. (c) Bottom left and top: Fully periodic network

(Guanella et al., 2007; Burak and Fiete, 2006; Fuhs and Touretzky, 2006; Pastoll et al., 2013; Brecht et al., 2014; Widloski and Fiete, 2014), with

global connectivity and periodic boundaries. Bottom right: multi-bump network with local-looking connectivity but long-range connections between co-

active cells in different bumps. This model is mathematically equivalent to a fully periodic model (see Figure 1—figure supplement 1). (d) A network

with a single activity bump and without periodic boundaries cannot properly retain phase information as the bump moves around: it will not be a good

integrator of animal velocity and is not a candidate mechanism. (e) Movement of the animal (left) causes a flow of the population pattern in proportion

to animal velocity (four snapshots over time in center panels) for the models in (a–c). Red line: Electrode whose tip marks the location of a recorded

cell. The recorded cell’s response is spatially periodic (right; spikes in black), like grid cells. (f) Feedforward model: A grid cell (green) receives and

combines inputs that are spatially tuned with uniform resolution across open spaces (implying these inputs reflect path integration-baed location

estimates). These inputs may arise from recurrent ring attractor networks (Mhatre et al., 2012; Blair et al., 2008) (top) and exhibit stripe-like spatial

tuning either in their firing rates (Mhatre et al., 2012) (bottom left) or firing phase with respect to the theta-band LFP oscillation (Welday et al., 2011;

Bush and Burgess, 2014) (not shown). Or, they could arise from place cells assumed to path integrate (Kropff and Treves, 2008; Dordek et al.,

2016). Selective feedforward summation followed by a nonlinearity produces grid-like responses (bottom right).

DOI: https://doi.org/10.7554/eLife.33503.002

The following figure supplements are available for figure 1:

Figure supplement 1. (Weakly) coupling neurons based on periodic activity patterning converts an aperiodic network into an effectively fully periodic

one.

DOI: https://doi.org/10.7554/eLife.33503.003

Figure supplement 2. The a priori theoretical implausibility of partially periodic networks.

DOI: https://doi.org/10.7554/eLife.33503.004
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Second are fully periodic networks (Figure 1c) (Guanella et al., 2007; Fuhs and Touretzky,

2006; Pastoll et al., 2013; Brecht et al., 2014). The network is topologically a torus with periodic

boundary conditions between the pairs of opposite edges, and connectivity is global: There is no

neural rearrangement under which network connectivity will be local. It is mathematically equivalent

to view this network as having a single activity bump (Burak and Fiete, 2006; Guanella et al., 2007)

or having multiple periodically arranged bumps with inter-bump connections (Burak and Fiete,

2009). In this network, periodic connectivity underlies periodic activity. Developmentally, a fully peri-

odic network would naturally arise if associative plasticity continued post-pattern formation, so that

the topology of activity and connectivity would come to mirror each other (Widloski and Fiete,

2014).

Third are partially periodic networks (Burak and Fiete, 2009) (Figure 1b) with periodic boundary

conditions (torus topology) but only local connectivity on the torus after appropriate rearrangement

of neurons. In this model, neural activity on the cortical sheet is multi-peaked and periodic (under

appropriate rearrangement). Conceptually and developmentally, these networks are the strangest:

None of the connectivity in the bulk of the network reflects the periodic nature of activity within it,

except for the connectivity necessary to connect together neurons across the edges of an initially

aperiodic sheet of cells. The wiring of this ‘edge’ subset of neurons must, unlike the rest of the cells,

depend on details of the periodic activity pattern to make sure that opposite edge bumps are

‘aligned’ before joining (Figure 1—figure supplement 2). It is unclear how activity-dependent plas-

ticity rules, which could wire together faraway edge neurons based on activity, would refrain from

doing the same for the rest, to maintain otherwise local connectivity.

The fourth potential combination of topology and locality is not permitted: it is not possible to

obtain grid-like activity from neurons with global connectivity (and single-bump activity) but aperi-

odic boundaries (topologically flat hole-free networks), Figure 1d.

Feedforward models of grid cell activity form a robust and growing set. In these models, grid

cells merely sum and transform with a pointwise nonlinearity inputs that are already spatially tuned

with roughly uniform coverage and resolution across the environment (Figure 1f) (Kropff and

Treves, 2008; Welday et al., 2011; Mhatre et al., 2012; Bush and Burgess, 2014; Hasselmo and

Brandon, 2012; Dordek et al., 2016; Stachenfeld et al., 2017); thus, it is implicitly assumed that

the upstream inputs to grid cells have already performed path integration. These feedforward mod-

els, which we propose could be distinguished from recurrent models with the proposed perturbative

approach, themselves segment into two major varieties. One type (Welday et al., 2011;

Mhatre et al., 2012; Bush and Burgess, 2014; Hasselmo and Brandon, 2012) generates low-

dimensional grid cell population activity across environments (e.g., in Welday et al., 2011, three

upstream circuits, each a 1D continuous attractor network, integrate one component of animal

velocity aligned to each of the three primary directions of a triangular lattice; the combined response

is 2-dimensional, and preserved across environments; other models of this type differ in details but

are similar in this regard), as predicted also by the recurrent models and found in the data

(Yoon et al., 2013). In the second type (Kropff and Treves, 2008; Dordek et al., 2016;

Stachenfeld et al., 2017), the grid cell pattern for an environment depends on the place cell pattern

for that environment. Thus, when the place cell representations remap across environments, the

model grid cells will not preserve their spatial relationships.

Our candidate models are the set of recurrent and feedforward models described and cited

above. They are architecturally and mechanistically distinct in ways both large and subtle: they differ

in whether grid cells or their upstream inputs are performing velocity-to-location integration, in

whether spatial patterning originates wholly or only partly within grid cells, and in the structure of

their recurrent circuitry. As already noted, some of the subtle-seeming structural differences have

important implications for circuit development: different connectivity profiles and topologies require

distinct models of plasticity and experience during circuit formation (Widloski and Fiete, 2014).

Nevertheless, candidate recurrent and feedforward models that exhibit approximate 2D continuous

attractor dynamics are difficult to distinguish on the basis of existing data.

As we discuss at the end, neither complete single neuron-resolution activity records nor complete

single synapse-resolution weight matrices (connectomes) will fully suffice to distinguish between the

candidate models because they are observational or correlative techniques: they do not probe the

causal origin of the observed responses.
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We show how it is nevertheless possible to gain surprisingly detailed information about the grid

cell circuit from a feasible perturbation-based experimental strategy, enough to discriminate

between the candidate models.

Results

A perturbation-based probe of circuit architecture
The question of mechanism is focused on a pre-specified set of neurons or local circuit: Is the

observed low-dimensional grid cell activity primarily based on recurrent interactions within the set,

and how, or is it inherited from feedforward drive originating outside this set? We refer to a pertur-

bation as simple, low-dimensional and global in this context if it affects most cells within this set

without regard to their individual functional identities, and does not affect those outside. In what fol-

lows, we consider the set to consist of all grid cells and conjunctive cells in one (or more) grid mod-

ules (Stensola et al., 2012), as well as the interneurons that surround them; toward the end we

discuss the effects of perturbing subpopulations or bigger sets.

The central idea is as follows: Globally perturbing either the time-constant of neurons or the gain

of recurrent inhibition is predicted to affect cell–cell spatial tuning relationships in candidate models

in a specific way that can be robustly observed and characterized from ultra-sparse sampling of neu-

rons in the network, and the predicted effects differ across candidate mechanisms.

To present the idea, we consider a thought experiment on the aperiodic recurrent network mod-

els. We will retake the larger perspective, of discriminating between the various model categories,

immediately afterward. In aperiodic models, perturbing the gain of recurrent inhibition or the time-

constant of neurons will induce a shift in the period of the internal population pattern (Figure 2—fig-

ure supplement 1). Let us quantify the change in period by the population period stretch factor,

a ¼ j
lpop;post
lpop;pre

� 1j (where lpop;pre is the pre-perturbation population period). Without loss of generality,

suppose that the focus of pattern expansion is at the left edge, Figure 2a (blue: original pattern,

red: expanded pattern). Each neuron can be assigned a population phase with respect to the period

of the population pattern: If the phase at the left edge is called 0 (again without loss of generality),

neurons lying at integer multiples of the original period also originally had a phase of 0 (Figure 2b).

However post-expansion, the population phase of a neuron originally one period away from the left

edge is no longer zero (Figure 2a,b). Let us call the shift in the population phase of this neuron one

‘quantum’ (Figure 2b), and denote it by D. The quantum of shift must be D ¼ j1�
lpop;pre
lpop;post

j ¼ a
1þa ( »a

for small perturbations). A neuron K periods away will shift in phase by K quanta, Figure 2b. If there

are M bumps in the population pattern, the largest shift will be M quanta, or MD (modulo 1). If we

construct a distribution of shifts in population phase pre- to post-expansion for cells across the net-

work, the distribution will be quantal, with 2M peaks (assuming the biggest phase shift, MD, is less

than 1=2, because phase is a periodic variable that we parameterize as running between �1=2 to

1=2; this condition can be met by keeping the perturbation small, such that D<1=ð2MÞ), Figure 2—

figure supplement 2 and Figure 2c. In other words, for small perturbations, the number of peaks in

this distribution is predicted to be twice the number of bumps in the original population pattern.

We will call this distribution of relative phase shifts the DRPS.

Practically, however, the grid cell network might not be topographically well-ordered on a suffi-

ciently fine scale (Heys et al., 2014), and one cannot simply image the population response and

expect to read off pattern phases for each cell as in Figure 2a,b.

Fortunately, the distribution of shifts in the difficult-to-observe population phases of cells, based

on instantaneous and topographically ordered population activity snapshots, is mirrored in the distri-

bution of shifts in the relative phase of the straightforward-to-observe and time-averaged spatial

tuning curves of cells (Figure 2d). Consider a pair of cells one population period apart pre-perturba-

tion, so they have the same population phase (circle, square or square, triangle in Figure 2a). These

cells are co-active and have the same spatial tuning curves, and thus a relative spatial tuning phase

of 0 (circle, square or square, triangle in Figure 2d, top). Post-perturbation, their spatial tuning

curves will be shifted relative to each other by the same amount as the shift in their individual popu-

lation phases (circle, square or square, triangle in Figure 2d, bottom). In other words, cells one

bump apart in the original population pattern will exhibit one quantum of shift in their relative spatial
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Figure 2. Global perturbation with analysis of phase shifts: signatures of recurrent patterning. (a) Schematic of population activity before (blue) and

after (red) a 10% period expansion (a ¼ 0:1; the center of expansion is shown at left, but results are independent of this choice) in an aperiodic network.

Circle, square, triangle: three sample cells with the same pre-expansion population phase. (b) The population phase fi
pop of the ith neuron is defined as

fi
pop ¼ ði� 1Þ=lpop

� �
mod 1 where lpop is the population pattern period. Plotted: population phase magnitudes pre- (blue) and post- (red) expansion

(phase magnitude is given by the Lee distance, jfj ¼ min jjfjj; 1� jjfjjð Þ, where jj � jj denotes absolute value). (c) Histogram of quantal shifts in the pre-

to post-expansion population phases for all (n = 100) cells in the network. Gray line: raw histogram (200 bins). Black line: smoothed histogram

(convolution with 2-bin Gaussian). Negative (positive) phase shifts arise from gray-shaded (horizontally-striped) areas in (b). (d–e) Quantal shifts in the

population phase (experimentally inaccessible) are mirrored in shifts in the pairwise relative phase of spatial tuning between cells (experimentally

Figure 2 continued on next page
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tuning. The relative phase of spatial tuning for a pair originally separated by K periods will shift by K

quanta post-perturbation (e.g., circle, triangle in Figure 2d, bottom: spatial tuning curves shift by

two quanta in phase because these cells were two periods apart in the original population pattern).

This series of theoretical observations leads us to construct a predicted distribution of relative

phase shifts (DRPS) from all pairs of neurons, Figure 2e. The DRPS is quantal and has the same num-

ber of peaks as the distribution of shifts in population phase (Figure 2c). Indeed, multiplying the

number of peaks in the multimodal DRPS by 1=2 gives the number of bumps in the original popula-

tion pattern, if the quantal shift size is sufficiently small. The DRPS is a property of patterning in an

abstract space, independent of how neurons are actually arranged in the cortical sheet. It can be

obtained from the spatial tuning curves of cells recorded simultaneously through either conventional

electrophysiology or imaging. As we show later, a robust estimate of the full DRPS can be obtained

from only a handful of cells.

In 2D, relative phase is a vector. The two components are each computed simply as in 1D, along

each of the two principal axes of the spatial tuning grid. For an aperiodic network, for small enough

perturbations, the total number of bumps in the population pattern can be inferred to be a quarter

of the product of the number of peaks in the two relative phase shift distributions from the two com-

ponents of the relative phase (Figure 2f–h).

Experimental knobs to modulate the population pattern
To generate the DRPS in experiment and use it to distinguish between grid cell models requires an

experimental knob that can be turned to change the period of the population activity pattern. Tem-

perature is one potential knob: Cooling a biological system reduces reaction rates and increases

time-constants through the Arrhenius effect (Katz and Miledi, 1965; Thompson et al., 1985;

Moser and Andersen, 1994; Long and Fee, 2008). However, existing models of grid cells are

based on simplified rate-based or linear-nonlinear Poisson (LNP) spiking units, and it is unclear which

parameters to modify to correctly predict the effects of cooling the neural circuit: Varying a ‘neural’

time-constant parameter in a recurrent network of simple units may or may not change the popula-

tion pattern period, depending on whether PSP height is scaled together with the time-constant

change (Widloski and Fiete, 2014; Beed et al., 2013) or not. To better predict the effects of cool-

ing on grid cell period, we constructed more detailed grid cell models using cortical Hodgkin-Huxley

model neurons (Pospischil et al., 2008) whose parameters accommodate thermal effects

(Hodgkin et al., 1952; Katz and Miledi, 1965).

Figure 2 continued

observable). (d) Schematic of spatial tuning curves of three cells (circle, square, triangle) from (a). Pre-expansion the tuning curves have the same phase

(top), thus their relative spatial tuning phases are zero. The tuning curves become offset post-expansion (bottom), because the shift in the population

pattern forces them to stop being coactive. (e) Distribution of relative phase shifts (DRPS; gray). Relative phase between cells i; j (dij is the offset of the

central peak in the cross-correlation of their spatial tuning curves; l is their shared spatial tuning period). A relative phase shift is the difference in

relative phase between a pair of cells pre- to post-perturbation. Black: smoothed version. There are (100 choose 2)=4950 pairwise relative phase

samples. (f) Population activity pattern and pattern phase pre- and post-expansion in a 2D grid network (as in (a–b)). Dotted lines: principal axes of the

population pattern (left). An arrow marks each cell’s population phase (right). (g) DRPS for the two components of 2D relative phase (as in (e); see

Materials and methods). Samples: (3200 choose 2).

DOI: https://doi.org/10.7554/eLife.33503.005

The following figure supplements are available for figure 2:

Figure supplement 1. Dynamical simulations of the aperiodic network with LNP dynamics: gradual change in population period.

DOI: https://doi.org/10.7554/eLife.33503.006

Figure supplement 2. When the 2:1 relationship between number of peaks in the DRPS and the number of bumps in the population pattern breaks

down.

DOI: https://doi.org/10.7554/eLife.33503.007

Figure supplement 3. Alternative formulation of the DRPS.

DOI: https://doi.org/10.7554/eLife.33503.008

Figure supplement 4. Cortical Hodgkin-Huxley (CHH) simulations to assess the effects of cooling as an experimental perturbation and to elucidate the

link between temperature and parameter settings in grid cell models with simpler neurons.

DOI: https://doi.org/10.7554/eLife.33503.009
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The population period in aperiodic grid cell models built from Hodgkin-Huxley neurons is pulled

in opposing directions by temperature modulations in ion-channel biophysics and synaptic signalling

(Figure 2—figure supplement 4). However, the dominant influence on network response comes

from the growth in the PSP time-constant with cooling and results in an overall expansion of the

population period (Figure 2—figure supplement 4).

This result allows us to conclude that the net effect of cooling the biological circuit should be an

expansion in the period, if the circuit is recurrently connected and aperiodic. It also allows us to con-

tinue using simple rate-based and LNP spiking models because we can now interpret how to scale

parameters as a function of temperature: It is most appropriate to scale the time-constant inversely

with temperature, while essentially keeping the PSP height fixed (Figure 2—figure supplement 4).

The strength of recurrent inhibition is another experimental knob. Unlike temperature, manipulat-

ing the gain of inhibitory synaptic conductances has a relatively unambiguous interpretation in grid

cell models. Experimentally, the strength of inhibition might be modulated by locally infusing alloste-

ric modulators that increase inhibitory channel conductances (e.g. benzodiazipines; Rudolph and

Möhler, 2004 and personal communication with C. Barry). In both cortical Hodgkin-Huxley based

models grid cell models (Figure 2—figure supplement 4) and rate-based models, a gain change in

inhibitory conductances predicts a change in the period of the population pattern (Figure 2—figure

supplement 4 and Moser et al., 2014, Widloski and Fiete, 2014).

To summarize, thermal perturbation (cortical cooling) and biochemical perturbation (drug infu-

sions to alter the gain of recurrent inhibition) are two experimental manipulations that could, accord-

ing to the models, alter the period of a recurrently formed population pattern and thus may act as

appropriate knobs to enable the construction of the DRPS.

Discriminating among recurrent architectures
In dynamical simulations of the various plausible candidates (Materials and methods), the same

global perturbations have different effects, resulting in distinct predicted DRPS’s. To generate maxi-

mally robust and easy-to-interpret predictions, we focus on how the candidate models differ with

respect to one simple property of the DRPS: the overall width of its envelope.

In aperiodic networks (Figure 1a) with smooth boundaries for accurate integration (Burak and

Fiete, 2009), an incremental increase in the strength of global perturbation results in incremental

expansion of the population activity pattern (Figure 3a, red, and Figure 2—figure supplement 1)

(see Widloski, 2015 for an analysis of boundary conditions and permitted number of peaks). Thus,

the peaks in the DRPS will incrementally spread out, producing a DRPS envelope that gradually and

smoothly widens with perturbation strength (Figure 3b–c, red). In addition, because the change in

period is incremental when the perturbation strength is gradually increased, it may be possible to

estimate the number of bumps in the population pattern by counting peaks in the DRPS.

Partially periodic networks (Figure 1c), unlike aperiodic networks, must because of their symme-

try accommodate an integer number of complete activity bumps in a way that is perfectly periodic

(Widloski, 2015). The bumps and spacings within a partially periodic network are identical and the

population pattern (if the geometry of the 2D pattern is fixed) is characterized simply by the number

of bumps, which is constrained to be an integer. Incrementally increasing the perturbation strength

is thus predicted to first result in no change, followed by a sudden change when the network can

accommodate an entire additional bump, Figure 3a (purple) (or an additional row of bumps in 2D,

assuming the pattern does not rotate as a result of the perturbation; see Discussion). As soon as a

new bump has been inserted into the population pattern, the phase shifts will be large even for cells

in adjacent bumps, and the DRPS will be wide. To summarize, for partially periodic networks, incre-

mental changes in perturbation strength are therefore predicted to result in a stepwise (stepping to

maximal width) change in the DRPS (Figure 3b–d, purple).

Counting peaks to estimate the number of bumps in the underlying population pattern after a

stepwise change in the DRPS will likely result in substantial underestimation: because the phases

shift by a large step when a change occurs, if a shift of M quanta already exceeds one cycle, the

DRPS will not distinguish between an M-bump and a K-bump network (K>M; Figure 2—figure sup-

plement 2 and e.g., Figure 3b: compare peaks in the solid and dashed lines for small and large per-

turbations, respectively).

Finally, in the fully periodic network (Figure 1b) the globally periodic connectivity completely

determines the population period of the pattern, and changes in the neural time-constants or
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network inhibition strength do not alter it (Figure 3a, blue). Thus, the same global perturbations

that effected changes in the population period in the other recurrent models (Figure 3a, red and

purple) have no effect in the fully periodic network. The DRPS is consequently predicted to remain

narrow, unimodal, and peaked at zero (Figure 3b–c, blue).

Discriminating feedforward from recurrent architectures
If low-dimensional dynamics and spatially tuned responses first originate upstream of the perturbed

set, then the perturbations will leave unchanged the spatial tuning phases of grid cells, preserving

grid cell–grid cell relationships. This prediction holds even if grid cells play a role in constructing

their particular patterns of spatial tuning, for instance by combining elements that are already spa-

tially tuned as when stripe-tuned inputs are combined to generate 2D lattice responses

Figure 3. Effects of perturbation in recurrent and feedforward neural network simulations: predictions for

experiment. (a) Simulations of aperiodic (column 1), partially periodic (column 2), and fully periodic (column 3)

networks show changes in the population pattern pre-perturbation (first row; ginh ¼ 1) to post-perturbation

(second row; ginh ¼ 1:33). Solid vertical lines: pre-perturbation bump locations. (Simulation details in Materials and

methods.) (b) Perturbation-induced DRPS in the various networks for two perturbation strengths (ginh ¼ 1:33: solid

line and filled gray area; ginh ¼ 1:66: dotted line), both relative to the unperturbed case. (c) DRPS width (sDRPS,

defined as the standard deviation of the DRPS) as a function of perturbation strength for the different networks.

Dashed green line: feedforward networks (predicted, not from simulation). The step-like shape for the partially

periodic network is generic; however, the point at which the step occurs may vary from trial to trial. (d–e) Change

in spatial tuning period (d) and amplitude (e) as a function of the perturbation strength (see Materials and

methods). Change is defined as j
Xpost

Xpre
� 1j, where X is the spatial tuning period or amplitude.

DOI: https://doi.org/10.7554/eLife.33503.010

The following figure supplement is available for figure 3:

Figure supplement 1. Changes in spatial tuning period in neural network simulations of the grid cell circuit are

due to changes in both the population period and the velocity response of the network.

DOI: https://doi.org/10.7554/eLife.33503.011
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(Mhatre et al., 2012; Welday et al., 2011; Bush and Burgess, 2014) (Figure 1f). Thus, for feedfor-

ward models, as for fully periodic (recurrent) networks, the DRPS is predicted to remain narrowly

peaked at zero across a range of perturbation strengths (Figure 3c, dashed green line).

Further, perturbing grid cells but not their spatially patterned feedforward inputs will not affect

their spatial tuning. By contrast, in all recurrent models (Figure 1a–c), perturbing the grid cell net-

work induces a change in the efficacy with which feedforward velocity inputs drive the population

phase over time, thus the spatial tuning period of cells is predicted to change even if the population

period does not (as in fully periodic networks – see Figure 3—figure supplement 1), Figure 3d.

This expansion in spatial tuning period with global perturbation strength is predicted to hold for all

three recurrent network classes, and distinguishes fully periodic recurrent networks from feedfor-

ward ones.

Finally, in both feedforward and recurrent neural network models, the amplitude of the grid cell

response will change in response to perturbation (Figure 3e). This universal prediction of amplitude

change with perturbation can be used as an assay of whether the attempted global perturbation is

in effect.

Data limitations and robustness
We consider two key data limitations. First, it is not yet experimentally feasible to record from all or

even a large fraction of cells in a grid module. Interestingly, the proposed method is tolerant to

extreme sub-sampling of the population: a tiny random fraction grid cells from the population (10

out of e.g. 1600 cells, or 0.6%) can capture the essential structure of the full DRPS, Figure 4a, includ-

ing its overall width and the detailed locations of its multiple peaks. This robustness to subsampling

is dramatically better than in statistical inference methods, where even ‘sparse’ methods can require

~ 2 orders of magnitude denser data (Soudry et al., 2015).

The second limitation arises from the limited accuracy with which spatial tuning and relative phase

can be estimated from finite data. In tests that depend only on the width of the DRPS (e.g. Figure 3),

this phase uncertainty is not a serious limitation.

Resolving the relative phase accurately becomes important when counting DRPS peaks to esti-

mate how many bumps are in the underlying population pattern of a recurrent network. The spacing

between DRPS peaks determines the required tolerance in relative phase (Figure 4—figure supple-

ment 1). DRPS peak spacing (in the aperiodic network) increases with the stretch factor at small

stretch factors (Figure 4b and Figure 4—figure supplement 1), but the stretch factor must still

obey a»D<1=ð2MÞ (where M equals the larger of the number of bumps along the two dimensions of

the population pattern; Figure 4b) to avoid underestimating the number of bumps in the population

pattern.

Fortunately, it is possible to gain progressively better estimates of relative phase over time even

if there is substantial drift in the spatial responses of cells, because relative phases remain stable in a

fixed network (Yoon et al., 2013) (here ‘fixed’ means that a given perturbation strength is stably

maintained). Many estimates of relative phase may be made from short pieces of the trajectory, and

these estimates averaged together (similar to the methods used in Yoon et al., 2013 and

Bonnevie et al., 2013).

To distinguish M ¼ 5 bumps per dimension based on structure within the DRPS requires a stretch

factor a »D<1=ð2MÞ ¼ 0:1, and a phase noise of 0.02 or smaller (Figure 4—figure supplement 1),

which would require an approximately 8 min recording (estimated from grid cell and trajectory data,

http://www.ntnu.edu/kavli/research.grid-cell-data), Figure 4c. Distinguishing seven bumps would

require a � 0:07, phase noise less than 0:01, and a 35 min recording.

In summary, the proposed method has high tolerance to subsampling and more limited tolerance

to phase uncertainty, which can be reduced by averaging estimates over time.

A decision tree for experimental design
We lay out a decision tree with an experimental workflow for discriminating between disparate feed-

forward and recurrent grid cell mechanisms, all of which exhibit approximate 2D continuous attractor

dynamics at the population level (Figure 5).

We start with the ‘specific’ approach, which, according to our model, has more discriminatory

power than the ‘nonspecific approach’ described later. The experimental demands of this approach

Widloski et al. eLife 2018;7:e33503. DOI: https://doi.org/10.7554/eLife.33503 10 of 27

Research article Neuroscience

http://www.ntnu.edu/kavli/research.grid-cell-data
https://doi.org/10.7554/eLife.33503


are to be able to stably induce a global perturbation in at least one grid module, and to do so at 2–

3 different strengths. Critically, the perturbation must be one of the two specific types discussed

above: a perturbation of the strength (gain) of inhibition in the network, or of the network time con-

stants. The data to be collected are simultaneous recordings from several grid cells as the animal

explores novel enclosures with no proximal spatial cues, over a � 20 minute trajectory.

First, before applying a perturbation, characterize spatial tuning (periods) and cell–cell relation-

ships (relative spatial phases). Next, apply a series of 2–3 global perturbations of increasing strength.

At each perturbation strength, characterize the spatial tuning of cells and cell-cell relationships.

A change in the amplitude of the grid cells’ response across the different perturbations should

signal that the perturbation is having an effect, regardless of underlying mechanism (Figure 5, first

triangle on left).

If the different perturbation strengths do not cause a change in the spatial tuning periods of sin-

gle cells (but the response amplitudes do change), it follows that velocity integration and spatial pat-

terning are originating elsewhere, consistent with some feedforward mechanism (Figure 5, green).

Figure 4. Data limitations and the resolvability of predictions. (a) Left: The quantal structure of the DRPS (along

first principal axis of the 2D phase) is apparent even in small samples of the population (black: full population; red:

n = 10 cells out of 1600; stretch factor a ¼ 0:1). Right: The L2-norm difference between the full and sampled DRPS

as a function of number of sampled cells. Inset: log-log scale. (b) First and second rows: DRPS for population

patterns with different numbers of bumps (gray line: raw; black line: smoothed with 2-bin Gaussian). Column 1:

zero error or noise in estimating relative phase. Column 2: same DRPS’ as in column 1, but with phase estimation

errors (i.i.d. additive Gaussian noise with zero mean and standard deviation 0.02 for each component of the

relative phase vector,~dij). Column 3: Increasing the stretch factor (a ¼ 0:2) renders the peaks in the DRPS more

discernible at a fixed level of phase noise. For the 5-bump pattern (second row), MD»Ma ¼ 5� 0:2>1=2 and thus

the number of peaks in the DRPS times 1/2 at this larger stretch factor will underestimate the number of bumps in

the underlying population pattern. (c) In grid cell recordings (data from Hafting et al., 2005), the uncertainty in

measuring relative phase, as estimated by bootstrap sampling from the full dataset (see Materials and methods),

declines with the length of the data record according to T�
1

2 (dotted line). Parameters: lpop;pre ¼ 40=3» 13:3

neurons (a) =20 neurons (b, top row),=8 neurons (b, bottom row); a = 0.1; ê1 ¼ ½1; 0�; network size: 40� 40 neurons.

DOI: https://doi.org/10.7554/eLife.33503.012

The following figure supplement is available for figure 4:

Figure supplement 1. Effects of uncertainty in phase estimation.

DOI: https://doi.org/10.7554/eLife.33503.013
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To confirm, verify that cell–cell relationships remain unchanged across perturbations, as also pre-

dicted for feedforward networks.

If there is a change in the spatial tuning period, characterize the cell–cell relationships in each per-

turbation condition. Plot the DRPS from each perturbed condition relative to the pre-perturbation

condition, and quantify its width and if possible the separation between its peaks. If the DRPS width

or peak separation increases steadily and smoothly with perturbation strength, that implies an aperi-

odic recurrent architecture (Figure 5, red). If the DRPS peak separation or width exhibits a step-like

change, it is consistent with a partially periodic recurrent network (Figure 5, purple). Together with

a change in the spatial tuning period, a DRPS that remains narrowly peaked at zero, with no change

in width with perturbation strength, is consistent with a fully periodic network (Figure 5, blue).

Finally, if the network is either an aperiodic or partially periodic recurrent network, the number of

peaks in the DRPS for each relative phase dimension is a lower bound on the quantity 2M, where M

is the number of bumps in the population pattern along that dimension. If the stretch factor a times

the number of bumps is smaller than 1/2 and the DRPS is multiply peaked the number of DRPS

Figure 5. Decision tree for experimentally discriminating circuit mechanisms. The ‘specific’ approach involves a specific perturbation to either the gain

of inhibition or the neural time-constants. Under the assumption of this kind of perturbation, the period, the amplitude, and the relative phases of the

spatial tuning curves of neurons are measured pre-perturbation and then for each of three increasingly strong perturbations. A change in spatial tuning

amplitude means that the attempted perturbation is in effect. Recurrent mechanisms can be discriminated from feedforward ones based on whether

the perturbation changes the spatial tuning period (first open triangle). Different recurrent networks can be discriminated from each other based on the

change in DRPS width or peak separation with perturbation strength (second open triangle). Finally, the number of bumps in the multi-bump

population patterns can be inferred by counting the peaks in the DRPS (third open triangle), but for the partially periodic network only a lower bound

on the number of bumps can be established (dotted line). Inset: ‘Nonspecific’ approach: After a perturbation of any type, the relative phases are

measured. If the DRPS exhibits multiple peaks, then the underlying population pattern is multi-bump; otherwise, the test is inconclusive.

DOI: https://doi.org/10.7554/eLife.33503.014

The following figure supplements are available for figure 5:

Figure supplement 1. Perturbations applied to a random subset of neurons in the network.

DOI: https://doi.org/10.7554/eLife.33503.015

Figure supplement 2. Perturbations applied separately to the excitatory and inhibitory populations.

DOI: https://doi.org/10.7554/eLife.33503.016

Figure supplement 3. Perturbations applied to the gain of the neural response.

DOI: https://doi.org/10.7554/eLife.33503.017

Figure supplement 4. The effects of perturbations in networks with spatially untuned inhibitory neurons.

DOI: https://doi.org/10.7554/eLife.33503.018

Figure supplement 5. Learned place cell-based intrinsic error correction/resetting of grid phase in familiar environments is not predicted to play an

important role in novel environments according to model.

DOI: https://doi.org/10.7554/eLife.33503.019
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peaks should equal twice the number of population activity bumps along the corresponding dimen-

sion (Figure 5, final triangle and gray oval).

The ‘specific’ approach above should provide insight into the underlying dynamics of the system

with respect to the candidate models, regardless of outcome. By contrast, a ‘nonspecific’ approach

(Figure 5, dashed box) could do the same, but only for certain outcomes. Suppose that after a num-

ber of any type of perturbations to the system, with known or unknown underlying mechanisms and

at a local or systemic scale, one measures the DRPS. If the DRPS does not exhibit multiple peaks

then, because this outcome is consistent with many possibilities and the nature of the perturbation is

not precisely known or controlled to change the inhibitory gain or neural time-constant (the specific

perturbations that provide higher discriminatory power), one cannot conclude anything about circuit

architecture. On the other hand, if the DRPS after nonspecific perturbation does exhibit multiple,

equi-spaced peaks, one can conclude with high confidence that the brain generates an underlying

multi-bump population pattern through recurrent mechanisms with partially periodic or aperiodic

structure. This is because a multi-peaked DRPS is a highly specific outcome of recurrent pattern-for-

mation dynamics.

Questions about experimental contingencies

. Will it be possible to distinguish a ‘no effect’ result from an ‘experiment is not working’ result?
Specific inhibitory gain or time-constant perturbations are predicted to change the amplitude
of the neural tuning curves relative to the unperturbed case in all models of Figure 1. An
amplitude change from a specific perturbation is the signal that the experiment is working
(Figure 5, first triangle on left).

. If some circuit perturbation results in an amplitude change, can we learn something about the
circuit from it? If a perturbation affects response amplitudes without primarily affecting inhibi-
tory gains or neural time constants, it qualifies as a ‘nonspecific’ perturbation. The ability to
learn about circuit architecture then depends on the outcome: a multipeaked DRPS is informa-
tive, but a non-multipeaked DPRS is not (see Figure 3 and Figure 5 and above). For instance,
direct perturbation of the amplitude of neural responses primarily through a change in the
activation threshold of neurons (putatively the mechanism in Kanter et al., 2017 through the
action of DREADDs (Sternson and Roth, 2014; Sánchez-Rodrı́guez et al., 2017)) is predicted
to result in amplitude changes but not a pattern period change in any of the candidate models
(cf. Figure 5—figure supplement 3), and therefore cannot discriminate between feedforward
and recurrent models unless the perturbation also affects gains or time constants. Computa-
tion of the DRPS would help resolve the question.

. What if the perturbation targets only a (random) subset of grid cells in the circuit? The qualita-
tive predictions are unchanged if only a (random) subset of the neurons in the grid cell circuit
are targeted by the perturbation. Quantitatively, the size of the effect (change in period for a
given perturbation strength) will be scaled in recurrent network models by an amount propor-
tional to the fraction, Figure 5—figure supplement 1.

. What if the perturbation affects the time-constants of only excitatory (E) or only inhibitory (I)
cells? In an implementation of recurrent grid cell models with separate E and I populations
(Widloski and Fiete, 2014), if the perturbation is specific to only E or only I cells (so long as
the I cells are the ones that mediate inhibitory interactions between grid cells), the qualitative
predictions regarding the direction of change in the spatial tuning period and in the DRPS
remain unchanged (Figure 5—figure supplement 2).

. What if the perturbation affects the gain of only E or only I cells? The effect is the same as a
time-constant change in the particular populations (see response above). On the other hand,
changing the bias rather than the slope of the E cells, I cells, or both is a nonspecific perturba-
tion (see question above); the population period in recurrent models is predicted to not vary
with a bias change (Figure 5—figure supplement 3).

. What if the perturbed population includes speed cells (Kropff et al., 2015) and pure head
direction cells? Changing the amplitude or time-constant of speed cells and head direction
cells could further change the spatial tuning periods of grid cells by affecting the gain of veloc-
ity inputs to the system. However, perturbation of these cells should not by itself induce a shift
in relative phases in recurrent and feedforward network models, so DRPS predictions remain
as if the perturbed population did not include these cells.

. What if the perturbed population includes conjunctive grid-head direction cells
(Sargolini et al., 2006)? The experiment would answer the question of whether grid activity
patterns are generated through velocity integration by the targeted set of cells, without
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distinguishing the relative contributions of these two populations. Narrowing the set of tar-
geted cells to only one of these populations would provide finer-grained answers about mech-
anism. Similarly, if the experiment targets only grid cells and the mechanism is found to be
feedfoward, the same experiments can be repeated one level upstream.

. Would recurrent network models in which I cells are spatially untuned generate different pre-
dictions? The model for spatially tuning in E cells and untuned I responses is in Widloski and
Fiete, 2014. In simulation, the population period in the model can move in the opposite direc-
tion as a function of perturbation compared to models with spatially tuned I cells. However,
the DRPS is sensitive to the magnitude but not the sign of phase shifts hence predictions
about the DRPS remain qualitatively the same in both types of models (Figure 5—figure sup-
plement 4).

. What if errors in spatial phase estimation exceed the uncertainty assumed in this paper? Most
predictions (Figure 3) for differentiating between candidate mechanisms depend only on the
DRPS envelope and its width and not on its detailed multi-peaked structure. Thus, they are
fairly robust to phase estimation uncertainty (left two columns in (Figure 4b). Better phase esti-
mation is only required if the goal is to determine the number of bumps in an underlying recur-
rently patterned network. As described earlier, this uncertainty can be reduced by averaging
over longer trajectories.

. Will it be possible to discover if grid cell responses are based on selective feedforward summa-
tion of the intermingled non-grid cells in MEC? If the perturbation can be confined to exclude
the intermingled non-grid cells in MEC, then it should be possible to use the perturbation and
DRPS approach to tell apart a feedforward mechanism of spatial tuning inherited from non-
grid MEC cells from a recurrent mechanism.

. What if corrective inputs from place cells or external cues override the perturbation-induced
change in the grid cell response? This is a real possibility in familiar environments, and can
mask a multi-peaked DRPS even if it would exist in the absence of corrective cues. For this rea-
son, post-perturbation experiments should be performed in novel, featureless environments
(Figure 5—figure supplement 5; more discussion below).

Discussion
It is interesting to compare the potential of the present approach for discovering mechanism with

other approaches. A high-quality, full-circuit connectome (Seung, 2009; Briggman et al., 2011) can

specify the topology and locality of the network architecture. In other words, with appropriate analy-

sis of the obtained data it should be possible to learn whether the connectivity matrix is ‘local’

(Widloski and Fiete, 2014) (Figure 1a), partially periodic (Figure 1b), or fully periodic (Figure 1c).

Network topology is, however, but one ingredient in circuit mechanism: Determining whether the

observed connectivity actually accounts for the activity still requires inference (for instance, given a

set of connections and weights, it is unknown whether they are strong enough to drive pattern for-

mation in neural activity; determining this involves writing down a model of neural dynamics with the

observed coupling). Even with further inference steps, whether the network originates certain func-

tions like velocity-to-position integration and spatial tuning de novo (as in Figure 1a–c) or only

amplifies or alters spatial tuning inherited from elsewhere (as in Figure 1f) cannot be answered by

connectomics data. Despite their functional differences, feedforward and recurrent network models

may exhibit similar lateral connectivity between grid cells. By contrast, the perturbative approach

outlined here has the potential to reveal whether the function of path integration and spatial tuning

originates in the perturbed set. The same approach can be sequentially applied to candidate areas

progressively upstream of the grid cells.

Next, full-circuit activity data at single-neuron resolution can reveal much about the dynamics and

dimensionality of the population response in the circuit. But without perturbation, inferring mecha-

nism from activity alone is problematic: Materials and methods to estimate connectivity from activity

(Pillow et al., 2008; Roudi et al., 2009; Honey et al., 2009) yield only effective couplings that

reflect collective and externally driven correlations in addition to the true couplings. In other words,

activity data alone without perturbation does not indicate where the observed activity arises or its

mechanisms.

In summary, while connectomics and large-scale recording will provide vast amounts of valuable

information, they are by themselves fundamentally correlative and thus not sufficient for discriminat-

ing between the candidate models discussed here. As we have shown, they may also not be
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immediately necessary: a low-dimensional or ‘global’ perturbative approach which does not require

targeting specific individual neurons according to their responses can yield rich information about

mechanism, and can do so with a far sparser dataset.

Interestingly, cooling and similar perturbation experiments have been performed in V1

(Michalski et al., 1993; Ferster and Miller, 2000) but were not as revealing about underlying mech-

anism as they promise to be in grid cells. Why is this? Unfortunately, the candidate models of orien-

tation tuning in V1 are ring networks (fully periodic, single-bump) or a feedforward mechanism, and

as we have seen, these two models do not differ in their predictions for the DRPS (Figure 3). The

multi-bump spatial tuning of grid cells derived from velocity integration at some stage offers a way

to distinguish feedforward from recurrent models because perturbation at the integration stage is

predicted produce a change in the spatial tuning curve period, an opportunity that does not exist in

in V1. Thus, grid cells offer a unique opportunity to uncover the circuit mechanisms that support tun-

ing curves and computation in the cortex, and our modeling work shows how to do so.

Assumptions
We have assumed that the population pattern is stable against rotations (but the spatial tuning

curves of cells are permitted to rotate) because a rotation would induce large changes in the DRPS

and obscure the predicted effects of pattern expansion. Our assumption is supported by the obser-

vation that cell–cell phase relationships between grid cells are conserved across time and environ-

ments (Yoon et al., 2013), which can only hold if the underlying population pattern does not rotate.

The simplification that relative phases in the population pattern can be obtained from relative

spatial tuning phases is valid if the intrinsically determined relative spatial phases of cells are not

overridden by external spatial inputs. For instance, if an external cue (landmark or boundary) is asso-

ciated with a specific configuration of grid cell phases, with the association acquired pre-perturba-

tion, then the cue could activate the same configuration of grid cells post-perturbation, which can

interfere with the perturbation-induced shifts in the intrinsic relative phases between these cells. To

avoid this possibility it is important, post-perturbation, to assess spatial tuning relationships between

cells only in novel environments, where there are no previously learned associations between exter-

nal cues and the grid cell circuit. Ideally, these novel environments will be relatively free of spatial

cues that resemble previously encountered cues and boundaries. Thus, the best environments for

post-perturbation testing would be circular 2D arenas, differently colored, patterned, and scented,

and with minimal distal cues beyond a global orienting cue; or virtual environments with visually tex-

tured but landmark-free walls (Yoon et al., 2016).

Even in novel environments, intrinsic error correcting mechanisms hypothesized in

Sreenivasan and Fiete, 2011 might trigger pre-perturbation grid cell configurations: a configuration

of grid cells, after it is associated with a specific place field, can be triggered simply by activation of

that place cell by another but similar grid cell configuration in the novel environment. We explore

this possibility in a model and show that even after constructing associations of grid configurations

with place fields at every location in two familiar environments, grid cell activations in a novel envi-

ronment do not trigger activation of the learned place fields and their associated grid configurations

from the familiar environments Figure 5—figure supplement 5. Based on this result, we believe

that post-perturbation relative phases in grid cells may be relatively unaffected by intrinsic error-cor-

rection mechanisms in relatively featureless novel environments.

An interesting corollary to the possibility that previously learned reset or corrective inputs may

co-activate cells that are out-of-phase cells post-perturbation (as is possible for partially periodic and

aperiodic recurrent mechanisms) in familiar environments is that such resets should degrade rather

than improve the quality of grid cell spatial tuning post-perturbation in previously learned

environments.

Finally, it is important to note that if, in feedforward models, one were to include strong, continu-

ous (rather than punctate, landmark-based) feedback from the grid cell layer to the spatially tuned

inputs (as in Bush and Burgess, 2014), the network would effectively become a recurrent circuit that

we have not included as a candidate. Similarly, we have excluded from our analysis recurrent net-

work models of the spatial circuit with heterogeneous tuning and connectivity (Cueva and Wei,

2018; Banino et al., 2018; Kanitscheider and Fiete, 2016); these models do not yet capture the

modular dynamics of the grid cell system, in which cells cluster in spatial period and those with simi-

lar period have the same orientation without the help of external aligning cues. When these models
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are refined, and if the result is a distinct mechanism for modular grid cell dynamics than the candi-

date models considered here, it will be interesting to perform our proposed perturbations in them

to obtain their predictions for experiment.

Materials and methods
Figure 1 and Figure 1—figure supplement 1 are schematic. In Figure 2, Figure 4a–b, Figure 2—

figure supplement 2 and Figure 4—figure supplement 1, relative phase is computed from the

population phases using idealized (hand-drawn) periodic population patterns that expand

(dij ¼ fi
pop � fj

pop), without the use of neural network simulations. Figure 3, Figure 1—figure supple-

ment 1, Figure 2—figure supplement 1, Figure 3—figure supplement 1, Figure 2—figure supple-

ment 4, Figure 5—figure supplement 1, Figure 5—figure supplement 2, Figure 5—figure

supplement 3, and Figure 5—figure supplement 4, which distinguish between different recurrent

architectures, are obtained by simulating the grid cell system in a neural network. Briefly, the net-

work consists of excitatory and inhibitory neurons (except in Figure 1—figure supplement 1 – see

figure caption for details) with linear-nonlinear Poisson (LNP) spiking dynamics (Burak and Fiete,

2009; Widloski and Fiete, 2014) (except for Figure 2—figure supplement 4, where we use Hodg-

kin-Huxley dynamics). Structured lateral interactions between neurons pattern the neural population

responses. Relative spatial tuning phases are computed from the tuning curves of different neurons,

obtained by simulating the network response over 1 min long simulated quasi-random trajectories.

The analysis of relative phase shifts, tuning amplitude and period in a network includes all cells with

sufficiently good spatial tuning profiles: this set includes all cells in the fully and partially periodic net-

works and 3=4 of the cells in aperiodic networks (from the central part of the network). Since the

inhibitory and excitatory populations share similar population patterning and spatial tuning in these

simulations (except in Figure 5—figure supplement 4), we arbitrarily display results from the inhibi-

tory population.

Neural network simulations
We use two different neuron models in our network simulations: LNP and Hodgkin-Huxley neurons,

described below. Roman subscripts (e.g. i; j) refer to individual cells within population P. The popula-

tion index P can take the values fI, ER, ELg, designating inhibitory cells or excitatory cells that receive

rightward or leftward velocity input, respectively. Integration is by the Euler method with time-step

dt.

Linear-nonlinear-poisson (LNP) neurons
The time-varying firing rate rPi ðtÞ ¼ f ðGP

i ðtÞÞ of the ðP; iÞth cell is an instantaneous function of its time-

varying summed input GP
i ðtÞ with threshold-linear transfer function f :

f ðxÞ ¼
x x>0

0 x� 0:

�
(1)

Neurons emit spikes according to an inhomogeneous point process with rate rPi ðtÞ and coefficient

of variance of CV = 0.5 (see Burak and Fiete, 2009 and Widloski and Fiete, 2014 for details on

generating a sub-Poisson point process). LNP dynamics were used in all simulations except for Fig-

ure 2—figure supplement 4.

Cortical Hodgkin-Huxley (CHH) neurons
The membrane potential of the ðP; iÞth neuron is given by:

Cm

dVP
i

dt
¼�I ion;Pi ðVP

i Þ� I
syn;P
i (2)

where Cm is the capacitance of the membrane, I ionðVÞ is the sum of the cell’s intrinsic ionic currents,

and IsynðVÞ is the current from recurrent and feedforward synaptic inputs to the cell. The ionic current

is modeled as (Pospischil et al., 2008):
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I ionðVÞ ¼ gLðV �VLÞþ gKn
4ðV �VKÞþ gMqðV �VKÞþ gNam

3hðV �VNaÞ; (3)

where the g’s represent maximal conductance values and the V ’s are the reversal potentials of the

leak conductance (L), the fast (K) and slow (M) potassium conductances, and the sodium conduc-

tance (Na). The dynamics and parameter settings of n;m;q;h are as in Pospischil et al., 2008 (we

have replaced the ‘p’ gating variable in Pospischil et al., 2008 with the notation ‘q’). For CHH neu-

rons, the time of a spike is defined as the time-step when the voltage crosses 0 mV from below.

CHH dynamics were used in Figure 2—figure supplement 4.

Synaptic activation
For both LNP and CHH neurons, spikes by the ðP; iÞth neuron activate all its outgoing synapses

according to:

dsPi
dt
þ

sPi
tsyn
¼
X

b

dðt� tPi;bÞ; (4)

where tPi;b is the time of the bth spike and dðtÞ is the Dirac delta function. The sum is over all spikes of

the cell.

Network inputs and interactions
We based our grid cell network models on the connectivity and weights that emerge from plasticity

rules over a plausible developmental process, given in Widloski and Fiete, 2014, and thus might

better represent the grid cell system than a model fully wired by hand. Moreover, the network con-

tains both inhibitory and excitatory units (with the number of inhibitory units equalling 1/5 the num-

ber of excitatory units, like in cortex).

Synaptic input to LNP cells
The total synaptic input Gsyn;P

i ðtÞ into the ðP; iÞth LNP cell is given by

G
syn;P
i ¼ ½avel;PðGrec;P

i þG0ÞþG0
0;P�AP

i ; (5)

where avel;P is the velocity input (described below), in multiplicative form; Grec;P
i ¼

P
P0

PNP0

j¼1W
PP0

ij sP
0

j is

the recurrent network input; G0;G0
0;P are (small, positive) constant bias terms

(G0 ¼ 50;G0
0;I ¼ 0;G0

0;EL

¼G0
0;ER

¼ 15); and AP
i is a smooth envelope that modulates neural activity

magnitudes across the network (described below).

To model additive velocity input, as in Figure 2—figure supplement 1c, we replace Equation 5

with the following:

G
syn;P
i ¼ ½Gvel;PþG

rec;P
i þG0þG0

0;P�AP
i ; (6)

where Gvel;P ¼Wvelavel;P and Wvel ¼ 200 (avel;P described below).

Synaptic input to CHH cells
The total synaptic current Isyn;Pi into the ðP; iÞth CHH neuron is given by

I
syn;P
i ¼ avel;P

X

P0

g
rec;P
i ðVP

i �V
P0

Þþ I0

" #
AP
i (7)

where V
P0

is the reversal potential for synaptic inputs from population P0 (V
E
¼ 0 mV and V

I
¼�80

mV), grec;Pi ¼
PNP0

j WPP0

ij sP
0

j is the recurrent network input, I0 is a constant bias and avel;P;AP
i are the

same velocity and envelope terms mentioned above.

Velocity input
The cells in the Pth population receive a common motion-related input proportional to animal veloc-

ity along preferred direction êP:
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avel;P ¼ 1þbvel~v � êP; (8)

where ~v is the instantaneous velocity of the animal and bvel is a scalar gain parameter. êP ¼ (0,0),

(0,1), (0,–1) for the I, ER and EL populations, respectively. Unless otherwise noted, the velocity input

is derived from a 1 min quasi-random trajectory (Widloski and Fiete, 2014).

Recurrent weights
We based the recurrent weights WPP0

ij from cell j in population P0 to i in P on those from the mature

network of Widloski and Fiete, 2014.

We first describe weights in their periodic form. Let xij ¼ i� gj, where g ¼ NP

NP0
(NP is the number of

neurons in population P). We also define the norm, jjxjjNP
� min NP � jxj; jxjð Þ. The E!I weights (i.e.,

P ¼ I and P0 ¼ EL;ER) are written as

Wij ¼
h

�
exp

�jjxij� �Djj2NI

2ðs�Þ2

 !
; (9)

where h controls the overall weight strength, D and s control the shift and width, respectively, of the

Gaussian profile, and � is a scale factor that is used to shift from partially periodic (�¼ 1) to fully peri-

odic (�¼ 11). The parameter � takes the same values for the I-E and I-I weights (which are described

below). The parameters are set as follows:

Weight h D s

EL ! I 11.5 -2 4

ER ! I 11.5 2 4

The I!E weights are written as

Wij ¼
h

�
exp

�jjxij� �Djj2NE

2ðs�Þ2

 !
QðjjxijjjNE

� �dÞ Qð��xijÞQð�xijþNE=2ÞþQð�xij�NE=2Þ
� �

; (10)

where Q is the Heaviside function (QðxÞ ¼ 1 for x>¼ 0 and 0 otherwise). The first Heaviside function

cuts out weights along the diagonal (the width of which is controlled by the parameter d), while the

second, third, and fourth Heaviside functions together act as a windowing function to set to zero

portions of the matrix to make the weights qualitatively resemble the developmental weights from

Widloski and Fiete, 2014. The parameters are set as follows:

Weight h D s � d

I ! EL 4 8 10 -1 3

I ! ER 4 -8 10 1 3

Finally, the I!I weights are written as

Wij ¼
h

�
exp

�jjxij� �Djj2NI

2ðs�Þ2

 !
þ exp

�jjxijþ �Djj2NI

2ðs�Þ2

 !" #
QðjjxijjjNI

� �dÞ; (11)

which is essentially a sum-of-Gaussians with the central portion removed (the width of which is con-

trolled by d). The parameters are set as follows:

Weight h D s d

I ! I 12 4 6 3

For the aperiodic network, the weights have the same form and parameter values as above (with

� ¼ 1), except with the following replacements:

Widloski et al. eLife 2018;7:e33503. DOI: https://doi.org/10.7554/eLife.33503 18 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.33503


jxj  jjxjjN (12)

APP0

ij WPP0

ij  WPP0

ij : (13)

where j:j is the absolute value and APP0

ij ¼ AP
i A

P0

j is an envelope function used to enforce a tapered

profile on the weights, similar to Burak and Fiete, 2009:

AP
i ¼

1 rPi <kNP

exp �a0
rP
i
�kNP

ð1�kÞNP

� �2� �
otherwise,

8
<
: (14)

where rPi ¼ ji�
NP

2
j, andk¼ 0:3 determines the range of the taper while a0 ¼ 30 controls its steepness.

Changing pattern period by varying the ‘neural’ time-constant and the gain
of recurrent inhibition in a network of LNP neurons
The period of the population pattern can be varied by rescaling the synaptic activation time con-

stant, tsyn. It can also be varied by changing a gain parameter ginh that controls the strength of syn-

aptic weights from the inhibitory neurons: we set WPI ! ginhW
PI , and allow ginh to be varied away

from unity.

The effect of time-constant on period in the different networks is quite non-trivial: It cannot be

derived from a linear stability analysis on the network equations since it depends strongly on nonlin-

ear interactions within the network bulk and with the network boundaries (Widloski, 2015). Instead,

we study the effect though simulation of the nonlinear dynamics of the networks.

As noted in the main manuscript, neuromodulators can drive the requisite gain changes in recur-

rent weights. We show, through the more detailed Hodgkin-Huxley neuron simulations described

below, that temperature may be used in experiments to cause similar changes in period as can be

affected by changing recurrent weight strength, and that the effects of temperature change resem-

ble the effects of changing the time-constant in the LNP model.

We study Hodgkin-Huxley (HH) dynamics to predict, with the help of more biophysically detailed

neuron models and the documented variation of their parameters with temperature, the effects of

cooling on population activity in grid cells. Specifically, we use a ‘regular spiking’ HH model of corti-

cal neurons (Pospischil et al., 2008), which we supplement with models that describe temperature-

induced changes in the parameters (Hodgkin et al., 1952; Katz and Miledi, 1965).

Effects of temperature and neuromodulation on HH dynamics
Some HH models include modifications that capture the effects of temperature variation

(Hodgkin et al., 1952; Katz and Miledi, 1965). These temperature effects are modeled by Q10 fac-

tors that multiply the time-constants (Qt
10
¼ 3) and amplitudes (Qa

10
¼ 1.3) of the ionic conductances.

At temperature T (in �C), the conductance amplitudes gðTÞ and time constants tðTÞ have the follow-

ing form:

gðTÞ gðT0ÞðQ
a
10
Þ
T�T0
10 (15)

tðTÞ tðT0Þ=ðQ
t
10
Þ
T�T0
10 : (16)

where T0 is 36
�. We applied the Q10 factor for g to the ionic conductance amplitudes gL;gK ;gM ;gNa as

well as to the synaptic conductance amplitudes WPP0

ij . We also simultaneously applied the Q10 factor

for t to the conductance and synaptic time-constants tn;tq;tm;th and tsyn. (For gating variable x, the

time constant tx is defined as tx ¼ 1=ðaxþbxÞ, where ax and bx are the rate constants governing the

gating variable’s dynamics (Pospischil et al., 2008).)

Finally, to isolate which parameters drove the strongest thermal effects on population patterning

and the direction of these effects (so that we could extract lessons for how to vary parameters in

grid cell models with simpler neuron dynamics) we applied thermal changes to the ionic conductan-

ces only (changing gL; gK ; gM ; gNa; tn; tq; tm; th according to the Q10 factors while holding WPP0

ij and tsyn
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constant), or to the synaptic conductances only (changing WPP0

ij and tsyn according to the Q10 factors

while holding the ionic conductance parameters fixed).

To simulate the effects of a neuromodulatory gain change in inhibitory synapses, we set WPI to

ginhW
PI , where ginh is the prefactor modulating the strength of inhibition.

Simulation parameters
LNP dynamics
NEL
¼ NER

¼ 400 neurons; NI ¼ 160 neurons; CV = 0.5; dt ¼0.5 ms; tsyn ¼30 ms*; bvel ¼ 1; ginh = 1*.

(*: Indicates that parameters can change through perturbation.)

Aperiodic network with CHH dynamics
All ionic conductance parameters are identical to those described in Pospischil et al., 2008 for the

RS model; as noted there, the parameters are set to values corresponding to a temperature of

T0 ¼ 36
�C. Synaptic weight definitions and parameter values same as LNP dynamics for aperiodic

network (above), except that all h values are scaled by the factor 0:0015 400 neurons; NI ¼ 160 neu-

rons; dt ¼0.025 ms; tsyn ¼15 ms*; bvel ¼ 0.8; Cm = 1 � F/cm2; gL ¼0.1 ms/cm2*; gK ¼5 ms/cm2*;

gM ¼0.07 ms/cm2*; gNa ¼50 ms/cm2*; VL ¼�70 mV; VK ¼�90 mV; VNa ¼50 mV; I0 ¼ 3 �A/cm2;

� ¼1. ginh = 1*. (*: Indicates that parameters can change through perturbation).

LNP dynamics with E-E connections
All network parameters and synaptic weight definitions same as for LNP network (see above) with

the addition of E-E connections (see below), except that the weight parameters have the following

changes:

Weight h D s � d

EL ! I 3 -2 8

ER ! I 3 2 8

I ! EL 3.25 8 8 -1 3

I ! ER 3.25 -8 8 1 3

I ! I 4 4 6 3

The E-E weights for the periodic networks are written similar to the E-I weights as

Wij ¼
h

�
exp

�jjxij� �Djj2NE

2ðs�Þ2

 !
; (17)

and have the following parameters:

Weight h D s

EL ! EL 5.5 -4 4

ER ! ER 5.5 4 4

EL ! ER 5.5 0 4

ER ! EL 5.5 0 4

As in the LNP case, to get the aperiodic version of the E-E weights, replace

jxj  jjxjjNE
(18)

AEE
ij WEE

ij  WEE
ij : (19)

where the envelope function Aij is described above.
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Alternative formulation of the DRPS
As before, the ith cell’s firing phase within the periodic population activity pattern, defined as the

cell’s population phase, is fi
pop ¼ ðði� 1Þmod lpopÞ=lpop (with the arbitrary choice, made without loss

of generality, that neuron 1 has phase 0) (Figure 2—figure supplement 3b, blue curve). For each

cell in the population, plotting the pre-perturbation phase against the post-perturbation phase (red

vs. blue curves in Figure 2—figure supplement 3b) shows that the data is quantized and lies on a

series of parallel manifolds, Figure 2—figure supplement 3c. This quantization is captured via the

following transformation to the phase shifts:

Dfi
pop ¼

fi
pop;pre�ð1þaÞðfi

pop;post � 1Þ; iffi
pop;pre<ð1þaÞfi

pop;post

fi
pop;pre�ð1þaÞfi

pop;post; otherwise;

(
(20)

(we have assumed that the true stretch factor, a, is known – later, we will show how a can be

inferred from the data) followed by a modulo operation

Dfi
pop ¼ Dfi

popmod 1; (21)

and then reflecting about the midpoint of the interval

Dfi
pop ¼minfDfi

pop;1�Dfi
popg: (22)

The distribution of these phase shift values, Figure 2—figure supplement 3d, has three special

properties: (1) The distribution is quantized, due to the fact that population activity pattern itself is

quantized. (2) The number of peaks in the distribution is exactly equal to the number of bumps in

the population activity pattern (this holds only for sufficiently small perturbations, such that DM<0:5,

where M is the number of bumps in the pre-perturbation population activity pattern – see Figure 2—

figure supplement 2 for explanation). (3) The peak separation in the distribution is exactly equal to

the stretch factor, a. The transformations described in Equations 20-22 require knowledge of the

stretch factor, a, a quantity that is not directly observable. However, it can be inferred from the

data, because the desired a value is the one that makes the distribution the most peak-y. This is

equivalent to projecting the data onto its orthogonal axis, Figure 2—figure supplement 3c. Peaky-

ness is quantified as the Pearson’s correlation coefficient between the DRPS and a comb-like func-

tion defined over the same interval. The comb function is a series of delta-functions laid out with a

spacing equal to a. The desired a stretch factor is the one that maximizes this correlation (not

shown).

Correction of grid cell phases by grid cell-driven place cells
The model described below is based on work in Sreenivasan and Fiete, 2011. We assume M mod-

ules, each with N grid cells. The ith grid cell from the mth module in the kth environment has the fol-

lowing simplified tuning curve response:

f GCi;m;kðxÞ / sin
2px

lm
þfiþ efm;k

� �
; (23)

where lm is the spatial period of the mth module, fi ¼ 2pi=N is the cell’s phase relative to others

within the module (fixed across environments), and efm;k is a random module-wide phase shift that is

specific to each module and each environment, Figure 5—figure supplement 5a. The synaptic pro-

jections from grid cells to place cells are set as follows: Assume a population of P place cells. For the

ith place cell in the kth familiar environment, assign a random place preference, xPCi;k . The synaptic

weight from the ðj;mÞth grid cell onto the ðiÞth place cell is incremented based on experience in envi-

ronment k. The increment is Hebbian, given by the amplitude of the grid cell tuning curve at that

place cell’s preferred location:

DWk
i;j;m ¼ f GCj;m;k xPCi;k

� �
: (24)

The total weight from grid cell ðj;mÞ to place cell i is given by the sum of increments over all L

familiar environments:
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Wi;j;m ¼
XL

k¼1

DWk
i;j;m ¼

XL

k¼1

f GCj;m;k xPCi;k

� �
: (25)

Given these weights, the ith place cell’s full sub-threshold activity in environment k is simply a

weighted sum over the activities of the grid cells across modules, based on its weights:

f PCi;k ðxÞ ¼
XM

m

XN

j

Wi;j;mf
GC
j;m;kðxÞ; (26)

This description of place cell subthreshold activations holds for both familiar and novel environ-

ments; the only difference between familiar and novel environments is that in the latter there has

been no increment of the grid cell-place cell weights based on coincident grid cell-place cell activity,

Figure 5—figure supplement 5a–b. In the current implementation, we allowed every cell to have a

field in every familiar environment. We see that even in this case, the subthreshold activations of PCs

in the novel environment are far lower than at place fields in familiar environment; in other words,

they will not be activated and drive correction or resetting of the grid cell phases in the novel envi-

ronment. Including the measured degrees of sparseness in PCs should lead to even less interference

than seen in simulated novel environment conditions.

Measures used in main text
DRPS in 1D
The relative phase of cell i and j is defined as dij ¼ dij mod l=l, where dij is the offset in the central

peak of the cross-correlation in their spatial tuning curves, and l is their common spatial period (in

the main text, for Figures 2, 4a-b, Figure 2—figure supplement 2, and Figure 4—figure supple-

ment 1, the relative phase is computed directly from the population phases, that is, dij ¼ fi
pop � fj

pop.

The relative phase magnitude is given by jdj ¼ minðjjdjj; 1� jjdjjÞ, where jj � jj is the absolute value

norm. The DRPS is computed by making a distribution of phase magnitude shifts, jdprej � jdpostj,

where dpre and dpost are the relative phases measured pre- and post-perturbation.

2D relative phase
For two cells i and j, let ~d be the displacement vector which measures the 2D offset in the central

peak of the cross-correlation in their spatial tuning curves. The displacement vector is converted into

a 2D phase ~d according to ~d ¼ ðd1; d2Þ ¼ f ðdproj
1

=l1 mod 1; dproj
2

=l2 mod 1Þ, where ~dproj ¼ ðdproj
1

; dproj
2
Þ is

the oblique projection of~d onto the principal vectors l1ê1 and l2ê2, and

f ð~xÞ ¼

ðx1� 1;x2� 1Þ if x1 � 0:5 and x2 � 0:5

ðx1� 1;x2Þ if x1 � 0:5 and x2<0:5

ðx1;x2� 1Þ if x1<0:5 and x2 � 0:5

ðx1;x2Þ if x1<0:5 and x2<0:5:

8
>>><
>>>:

(27)

DRPS in 2D
The DRPS in 2D is computed separately for the two components of the 2D relative phase. That is,

given the relative phase vector~d ¼ ðd1; d2Þ, the DRPS is computed by making a distribution of phase

magnitude shifts for each component: jd1;prej � jd1;postj and jd2;prej � jd2;postj, where the magnitude is

defined as the absolute value norm: j � j ¼ jj � jj:

Bootstrap resampling and phase uncertainty
Given an original spike map of M total spikes (with locations) from one cell, we created a new spike

map of N (N<M) total spikes, by picking spikes (with their corresponding location coordinates) from

the original map one at a time, at random, and with replacement. The same was done for a second,

simultaneously recorded cell. From these sampled spike trains for a pair of cells, we estimated rela-

tive phase (by computing the location of the peak closest to the origin in the cross-correlation of the

spatial maps of the two cells, as in Yoon et al., 2013). The procedure was performed 100 times,

generating 100 bootstrapped relative phase estimates per cell pair. Phase uncertainty was measured
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as the peak location of the Rayleigh distribution that best fit the distribution of magnitudes of the

bootstrapped relative phase estimates.

Spatial tuning curves
For a given cell and trajectory, we build a histogram of spike counts at each location (bin size = 1

cm), then normalize the count in each bin by the amount of time spent in it. The normalized histo-

gram is smoothed by convolution with a boxcar filter (width = 5 bins) to yield a spatial tuning curve.

Spatial tuning period and amplitude
The spatial tuning period is measured as the inverse of the spatial frequency with the highest peak

in the power spectrum of the spatial tuning curve (excluding the peak at 0 frequency). Likewise, the

spatial tuning amplitude is measured as the mean spike rate density across the bins of the spatial

tuning curve. The quantities reported in Figure 3 and Figure 3—figure supplement 1 are averaged

over all cells in the population.

Population activity period and gridness
The population activity gridness is taken to be the power of the largest frequency component of the

power spectrum measured from a normalized snapshot (frame) of the population activity

(normalized = mean subtracted, followed by division by standard deviation). The power spectrum is

rescaled by the factor 2/L2, where L is the number of bins in the population activity vector from

which the power spectrum was computed. The population activity vector is shortened to include

only the middle one-half of the population, so that for the EL population, L is 100. From the power

spectrum, the population activity period is taken to be the wavelength at which the power spectrum

has the largest peak. Throughout the paper, both the reported population period and gridness are

averaged over the last 10000 snapshots of the population activity pattern from a given trial.

Velocity response
Velocity response is measured as the translation speed (neurons/sec) of the network pattern to fixed

input velocity, computed by tracking the displacement of the pattern for 10 s, smoothing the result-

ing trajectory with an 4 s moving average filter, and then measuring the average speed of the mid-

dle-half of the trajectory.

Periodicity score for the DRPS
We smooth the histogram of relative phase shifts (by convolution with a 2-bin Gaussian kernel) and

normalize it (by mean subtraction and division by the standard deviation). Next, we compute the

power spectrum, rescaling the result by 2=L2, where L is the number of bins in the histogram

(L ¼ 200). The periodicity score is set to be the power of the largest- amplitude non-zero frequency

component in the scaled power spectrum. This score returns 1 if the DRPS is a pure sinusoid. It

returns 0 if the DRPS is flat and returns an average value of <0:2 if the DRPS were constructed bin by

bin by taking independent, identically distributed (iid) samples from a uniform distribution on the

unit interval.
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Schmidt-Hieber C, Häusser M. 2013. Cellular mechanisms of spatial navigation in the medial entorhinal cortex.
Nature Neuroscience 16:325–331. DOI: https://doi.org/10.1038/nn.3340, PMID: 23396102

Seung HS. 2009. Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron
62:17–29. DOI: https://doi.org/10.1016/j.neuron.2009.03.020, PMID: 19376064

Sompolinsky H, Shapley R. 1997. New perspectives on the mechanisms for orientation selectivity. Current
Opinion in Neurobiology 7:514–522. DOI: https://doi.org/10.1016/S0959-4388(97)80031-1, PMID: 9287203

Soudry D, Keshri S, Stinson P, Oh MH, Iyengar G, Paninski L. 2015. Efficient "Shotgun" inference of neural
connectivity from highly sub-sampled activity data. PLoS Computational Biology 11:e1004464. DOI: https://doi.
org/10.1371/journal.pcbi.1004464, PMID: 26465147

Sreenivasan S, Fiete IR. 2011. Error correcting analog codes in the brain: beyond classical population coding for
exponentially precise computation. Nature Neuroscience 14:1330–1337. DOI: https://doi.org/10.1038/nn.2901

Stachenfeld KL, Botvinick MM, Gershman SJ. 2017. The hippocampus as a predictive map. Nature Neuroscience
20:1643–1653. DOI: https://doi.org/10.1038/nn.4650, PMID: 28967910

Stensola H, Stensola T, Solstad T, Frøland K, Moser MB, Moser EI. 2012. The entorhinal grid map is discretized.
Nature 492:72–78. DOI: https://doi.org/10.1038/nature11649, PMID: 23222610

Sternson SM, Roth BL. 2014. Chemogenetic tools to interrogate brain functions. Annual Review of Neuroscience
37:387–407. DOI: https://doi.org/10.1146/annurev-neuro-071013-014048, PMID: 25002280
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